
SYSTEME AQUIFERE DU SAHARA SEPTENTRIONAL

Gestion commune d'un bassin transfrontière

ETUDE SUR LES RESEAUX D'OBSERVATION DU SASS

JUIN 2003

OBSERVATOIRE DU SAHARA ET DU SAHAEL

SYSTEME AQUIFERE DU SAHARA SEPTENTRIONAL

Gestion commune d'un bassin transfrontière

ETUDE SUR LES RESEAUX D'OBSERVATION DU SASS

JUIN 2003

OBSERVATOIRE DU SAHARA ET DU SAHEL

© 2003/Observatoire du Sahara et du Sahel (OSS)	
Observatoire du Sahara et du Sahel Boulevard de l'Environnement – BP 31 Tunis Cedex	
Tel. + 216 71 806 522 – Fax. + 216 71 807 310 E-mail : boc@oss.org.tn - URL : http://www.unesco.org/oss	

SOMMAIRE Préambule 4 1er PARTIE: LE RESEAU PIEZOMETRIQUE DU SASS 5 1 – IDENTIFICATION DU RESEAU PIEZOMETRIQUE DE REFERENCE DU SASS 6 1.1- Identification des historiques possibles 6 1.2 - Filtrages successifs et Puits-témoins de référence 6 1.3 - Groupes de points d'eau et Séries historiques de référence 7 1.4 – Le Réseau Piezometrique de Référence 7 2 - ANALYSE DU RESEAU DE REFERENCE 12 2.1 – Couverture Spatiale : le taux de présence intrinsèque 12 2.2 - Surveillance de l'Exploitation et Contrôle des Rabattements 14 2.3 - L'Indice de Durabilité des points du réseau 14 3 - CONSOLIDATION DU RESEAU DE REFERENCE: 16 3.1 - Densification spatiale 16 3.2 - Adéquation au calage du Modèle SASS : 16 3.3 - Couverture des RISQUES 18 3.3.1- L'Exutoire Tunisien (CI) 19 3.3.2- Le Bassin Artésien (CI) 19 3.3.3- Le Bassin de Ghadamès (CI) 19 3.3.4- Le Bassin Occidental (CI) 19 3.3.5- Les Chotts algéro-tunisiens (CT) 19 19 3.3.6- L'Oued Mya 3.3.7- Ferjan 19 3.3.8 - Khoms -Zliten 19 4- DEVENIR DU RESEAU DE REFERENCE 19 4.1- Poursuivre les séries avec les points les plus récents : 20 4.2-Transformer en Piézomètres les Forages les moins profonds : 20 5- CONCLUSION 2e PARTIE: LE RESEAU QUALITE DU SASS 23 Le Réseau Qualité du SASS 24

PREAMBULE

Cette étude a été réalisée par le professeur Mustapha BESBES dans le cadre du projet TCP/RAB/0065 à la demande conjointe de l'Organisation Mondiale de l'Agriculture et de l'Alimentation (FAO) et de l'Observatoire du Sahara et du Sahel (OSS).

Elle s'intègre parfaitement dans le cadre des attributions du mécanisme de Concertation tel qu'approuvé par la réunion régionale de Rome - Décembre 2002.

Elle constitue une tentative pour envisager la mise en place des réseaux d'observation du SASS (Piézométrie et qualité).

L'OSS souhaite vivement obtenir les commentaires des services compétents des institutions nationales des trois pays, permettant ainsi d'approfondir cette importante question des réseaux de suivi lors des travaux en cours de la 2^e phase du projet SASS.

L'OSS et la FAO félicitent le professeur BESBES pour la qualité de cette étude.

1^e PARTIE

LE RESEAU PIEZOMETRIQUE DU SASS

LE RESEAU PIEZOMETRIQUE DU SASS

Les Principaux Indicateurs de suivi et d'évaluation de la ressource en eau sont : les débits des prélèvements, l'évolution des niveaux piézométriques, l'évolution de la qualité des eaux. Pour ce qui concerne les débits de prélèvements, leur suivi passe par le jaugeage de tous les puits exploités ; le réseau comporte plusieurs milliers de forages et il semble difficile de les visiter tous annuellement : une périodicité d'actualisation de cinq années doit être envisagée. Dans le présent rapport, les possibilités de mise en place de Réseaux de suivi de la qualité et de la piézométrie sont étudiées à la lumière de l'analyse des informations contenues dans la Base de Données SASS.

1- IDENTIFICATION du RESEAU PIEZOMETRIQUE de REFERENCE DU SASS

1.1- Identification des historiques possibles

La Source d'informations prise en compte est la Base de données « Sagesse » (Tables « Points » et « Piézométrie »). La base de données comporte 8800 points d'eau, dont 7500 forages, qui sont les points d'eau susceptibles de fournir une indication de niveau piézométrique. Il existe 3001 points (soit 40%) présentant une valeur (au moins) de niveau.

Ce nombre passe à **1163 points d'eau** lorsqu'on exige au minimum deux mesures de niveau (prises à des dates différentes) : cette population, à l'état brut et avant toute vérification, constitue un réseau piézométrique en puissance puisque chacun de ses individus pourrait fournir une donnée sur l'évolution de la nappe au cours de la période historique de **référence** qui va de **1950 à 2000**.

Mais cette première population va être soumise à une série de vérifications et de filtres en vue d'éliminer toutes sortes de données aberrantes.

1.2- Filtrages successifs et Puits-témoins de référence

Le **premier filtre** consiste à vérifier que deux mesures enregistrées à des dates différentes ne soient pas strictement identiques(au cm près, ce qui n'est pas possible ou en tous cas représente une probabilité infinitésimale) : cela correspond généralement au simple report d'une valeur ancienne dans les colonnes d'un inventaire plus récent. Appliqué aux champs «altitude-np» et «niveau» de la base de données, ce filtre élimine 405 individus et ramène la population « réseau » potentielle à **758 points d'eau**.

Le **second filtre** s'applique aux points d'eau ne présentant que deux mesures seulement avec la condition que dans ce cas il ne peut y avoir de remontée de niveau: ce cas de figure(remontée) n'est certes pas impossible mais il correspondrait alors à un phénomène purement local dû à l'arrêt d'un pompage. Mais généralement, le phénomène correspond au non respect d'une convention de signe sur le report des niveaux artésiens (ce dernier est affecté d'un signe positif ou négatif selon les équipes techniques successives chargées de consigner les mesures à des années d'intervalle). Ce filtre élimine 99 points, ramenant le « réseau » à **659 points d'eau**.

Le **troisième filtre** élimine les points dont l'aquifère est indéterminé, et ceux dont les coordonnées sont inexistantes ou les situent en dehors du domaine du SASS. Ainsi, 86 points sont éliminés et il ne reste plus que **593 points d'eau**:

- 237 au CI: 71 en Algérie; 98 en Libye et 68 en Tunisie
- 341 au CT: 79 en Algérie; 9 en Libye et 253 en Tunisie
- 15 au GS* en Tunisie

Jusqu'ici, la sélection des points d'eau s'est faite d'une manière entièrement automatique, sans aucune intervention d'expert. Le **quatrième filtre** va consister à visualiser chacune des

séries identifiées précédemment (les deux champs :altitude-np et niveau de la BD sont reportés en fonction du temps). Les séries dont l'évolution est jugée inacceptable en première lecture sont à éliminer (remontée sur trois mesures, descente anormalement élevée, mais surtout et c'est le cas le plus fréquent : évolution non parallèle et parfois même opposée des deux variables altitude-np et niveau). Ce quatrième filtre ramène la population retenue à un réseau de **467 points d'eau :**

203 au CI : 46 en Algérie ; 94 en Libye ; 63 en Tunisie
249 au CT : 60 en Algérie ; 8 en Libye ; 181 en Tunisie

■ 15 au GS en Tunisie

1.3- Groupes de points d'eau et Séries historiques de référence

A ce niveau d'analyse, la plupart des anomalies ont été détectées et éliminées. Il restait à identifier les séries les plus représentatives de l'aquifère concerné, et celles susceptibles d'être intégrées dans le réseau de suivi à mettre en place : ces deux critères impliquent que la série considérée soit suffisamment fournie, assez longue, et qu'elle couvre d'une manière ou d'une autre les 30 ou 20 dernières années au cours desquelles le système a connu les perturbations les plus significatives. Il fallait pour ce faire procéder à des **regroupements de points d'eau** pour enrichir [combler et rallonger] les séries piézométriques existantes : pour chacun des aquifères, le regroupement se fait sur la base de la proximité des localisations géographiques et la similitude (le parallélisme) des évolutions piézométriques, ces deux conditions devant être simultanées. Lorsque le regroupement n'est pas possible ou n'est pas souhaitable, on aura affaire à des points d'eau isolés. Le résultat forme un réseau de **135 points d'eau ou groupes de points d'eau**:

• 90 au Cl :

27 en Algérie : 14 points isolés et 13 groupes 38 en Tunisie : 28 points isolés et 10 groupes 25 en Libye : 9 points isolés et 16 groupes

• 45 points au CT :

18 en Algérie : 8 points isolés et 10 groupes 24 en Tunisie : 10 points isolés et 14 groupes 3 en Libye : 1 point isolé et 2 groupes

1.4 Le Réseau Piézométrique de Référence

A partir de là, le réseau est soumis à un niveau d'analyse supplémentaire :

- a) pour **les points isolés**, on vérifie que les valeurs piézométriques sont du même ordre de grandeur que les grandeurs correspondantes reconnues au plan du secteur considéré (c'est le critère de vraisemblance régionale, que ce soit au niveau de la carte piézométrique d'ensemble de la nappe, carte de référence et carte calculée par le modèle, en 1950 ou 2000, ou au niveau de la carte de rabattements calculée par le modèle pour la période correspondante). Des erreurs de localisation peuvent alors être détectées : si elles ne peuvent être facilement corrigées, le point est éliminé. Sont également éliminés les points dont les mesures s'arrêtent aux années 70. Par ailleurs, des points isolés, relativement proches et indiquant des évolutions piézométriques similaires, peuvent former de nouveaux groupes.
- b) Pour **les groupes**, on commence par pressentir un « **chef de groupe** » ou « **tuteur** » : point d'eau qui présente la série la plus longue, la plus « actuelle » comportant les mesures les plus récentes (généralement les années 1995-2000 afin de préserver la possibilité d'une poursuite de la série à l'avenir), et celle dont l'évolution générale s'éloigne le moins de celle calculée par le modèle du SASS (ce dernier étant censé, avec le calage transitoire, avoir gommé les grosses disharmonies locales). Ensuite on commence par éliminer les points

d'eau apportant une information strictement redondante et dont les séries paraissent les moins performantes, ainsi que ceux dont l'évolution est trop éloignée de celle du tuteur sans que l'on sache expliquer cette différence. On procède alors à la construction de la série la plus longue et la plus représentative du groupe, sans redondance de l'information ce qui signifie que l'on ne garde q'une seule valeur de niveau pour une date donnée : on complète la série en empruntant des valeurs aux autres points du groupe, éventuellement en opérant par translation verticale de la courbe « empruntée » tout en respectant la pente générale de l'évolution piézométrique, laquelle doit être impérativement la même ou très proche pour l'ensemble du groupe.

En cas d'hétérogénéité de la variation piézométrique au sein d'un groupe, on peut reconstituer des sous-groupes. Les exemples les plus typiques de regroupements sont présentés fig.1&2. Sur la même figure et en vis à vis, sont présentées les séries synthétiques obtenues au terme du regroupement, séries désormais attribuées au tuteur.

Le résultat final est un réseau constitué de **73 points d'eau ou groupes de points d'eau [**le groupe étant représenté par son tuteur**]**, **soit** :

46 au CI (25 points isolés et 21 groupes):
 12 en Algérie: 6 points isolés et 6 groupes
 16 en Tunisie: 9 points isolés et 7 groupes
 18 en Libye: 10 points isolés et 8 groupes

• 27 au CT (4 points isolés et 23 groupes) :

8 en Algérie: 8 groupes

15 en Tunisie: 2 point isolé et 13 groupes 4 en Libye : 2 pointS isoléS et 2 groupes

Tableau 1 : Réseau de référence du Cl

	Réseau de Référence du CONTINENTAL INTERCALAIRE											
PA	YS	NOCLAS	NOM	GROUPE		PA	YS	NOCLAS	NOM	GROUPE		
1	Α	G00900109	SIDI KHALED 1	Point		24	Т	19450005	Douz (CI 12)	Chef de Gr		
2	Α	H01200037	BOU AROUA BAR 1	Point		25	Т	19452005	Steftimi (CI 7)	Chef de Gr		
3	Α	100700008	OUED MEHAIGUENE AB 1	Point		26	Т	20109005	S.Lahad (CI 17)	Chef de Gr		
4	Α	K01200001	SINCLAIR MPC RB2	Point		27	Т	19009005	Ksar Ghilane 3 bis	Chef de Gr		
5	Α	K00900004	Daiet Rempt (DR 101)	Point		28	T	X00700213	Bir Zebbas (BZ1)	Chef de Gr		
6		L00700062	TIN BOUZID N°24 NOUV	Point		29	L	WG10	WG10 (1230) (MP.0.50)	Point		
7	Α	O00700044	In Salah 1 (IS 101)	Chef de Gr		30	L	T/2B/103/0/76	Lawd Zamz	Point		
8	Α	J00800021	NOUMERATE AERODROME	Chef de Gr		31	L	SIQ1	Fawar al Khadem	Point		
9			ZAOUIET KOUNTA	Chef de Gr		32	L	3.83	Mardum	Point		
10	Α	101100437	SIDI SLIMANE	Chef de Gr		33	L	T/2A/0043/0/84	Taouargha	Point		
11		L01100011	GT 101 GASSI TOUIL	Chef de Gr		34	L	T/2B/0060/0/77	Wadi Zamzam	Point		
12	Α	N00400270	GUERRARA 13	Chef de Gr		35	L	WH 1	Wadi Whashkah	Point		
13	Т	19484005	Behaier (CI 9)	Point		36	L	BAK-2	B. Kabir	Point		
14	Т	X00700212	Ben Sabeur (SB 1)	Point		37	L	BAK-4	B. Kabir	Point		
15		19432005	MAHBES 1	Point		38	L	BAK-1	B. Kabir	Point		
16	Т	SP 4 N	SP 4 (1)	Point		39	L	N4 (44/81)	Nina	Chef de Gr		
17		19998005	Zemlet El bidha	Point		40	L	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Nemwah	Chef de Gr		
18	Т	19504005	Bir Zar	Point		41	L	JH6A	(JH6A)	Chef de Gr		
19	Т	06368005	Oued Abdallah 2	Point		42		K-8	Wadi Bay Kabir	Chef de Gr		
20	Т	07000005	SP3(Trapsa)(*)	Point		43	L	ZZ 1	ZZ1	Chef de Gr		
21	Т	06511005	Lorzot	Point		44	L	T/2B/0031/0/84	Sadadah	Chef de Gr		
22	T	18781005	EL BORMA 210	Chef de Gr		45		B-5 (1/81)	Bani walid (B-5 (1/81))	Chef de Gr		
23	Т	19190005	CF 1 bis	Chef de Gr		46	L	MAR6	(MAR6)	Chef de Gr		

Tableau 2 : Réseau de référence du CT

			Res	seau de Reference du C	10	MPL	ΕX	E TERMINAI	_	Reseau de Reference du COMPLEXE TERMINAL												
PA	/S	GROUPE	NOCLAS	NOM		PA	AYS GROUPE		NOCLAS	NOM												
1	Α	Chef de Gr	L01100012	ALLENDA NORD N 602		14	Т	Chef de Gr	06689005	Guidma 1												
2	Α	Chef de Gr	K01100022	PUITS D'EAU NS I.H.I		15	Т	Chef de Gr	14021005	MESSAID 3												
3	Α	Chef de Gr	J01000518	F SOVIET BOUROUBIA		16	Т	Chef de Gr	13995005	Scast 5												
4	Α	Chef de Gr	101100076	EL K'DA D36F63		17	Т	Chef de Gr	17675005	El Faouar west												
5	Α	Chef de Gr	H01100530	KOUININE		18	Т	Chef de Gr	13116005	PK 13												
6	Α	Chef de Gr	H01100840	MASRI		19	Т	Chef de Gr	09456025	Sebaa Biar 2												
7	Α	Chef de Gr	H01100356	SIDI AHMED TIDJANI		20	Т	Chef de Gr	19181005	Chouchet Negga 2												
8	Α	Chef de Gr	101000037	AIN EL ARCHE		21	Т	Chef de Gr	06756005	Ras El Aïn 1												
9	T	Point	20470005	hezoua pz 1		22	Т	Chef de Gr	18826005	GUETTAYA 4 bis												
10	Т	Point	18755005	Dergine El Ameur		23	Т	Chef de Gr	05692005	RAHMAT 2												
11	Т	Chef de Gr	19915005	C2F1		24	Г	Point	MW-1287	(1287) (MP.0.0)												
12	Т	Chef de Gr	05713005	Scast 4		25	L	Point	T/2B/0022/0/8	T/2B/0022/0/87												
13	Т	Chef de Gr	18859005	PZ Douz		26	L	Chef de Gr	JF18A	Ferjan												
		•				27	L	Chef de Gr	MW-2128	2128 (P6)												

Fig. 1 : Groupes de points d'eau et séries historiques de référence au CI

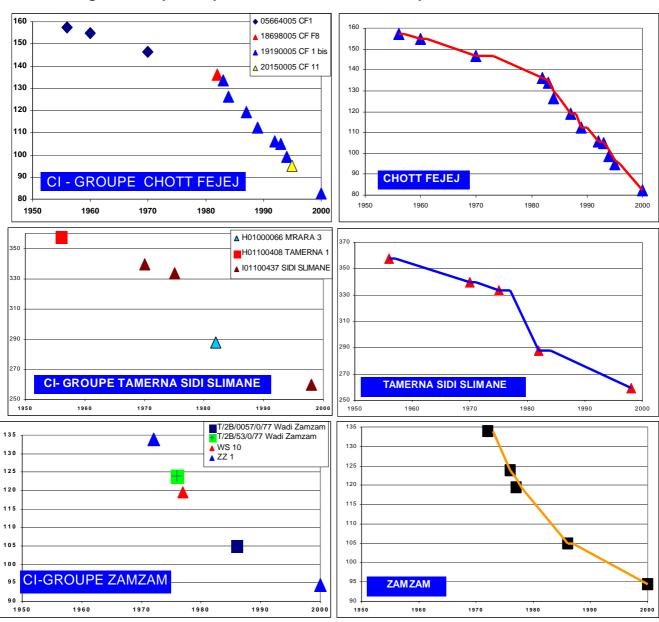


Fig. 2 : Groupes de points d'eau et séries historiques de référence au CT

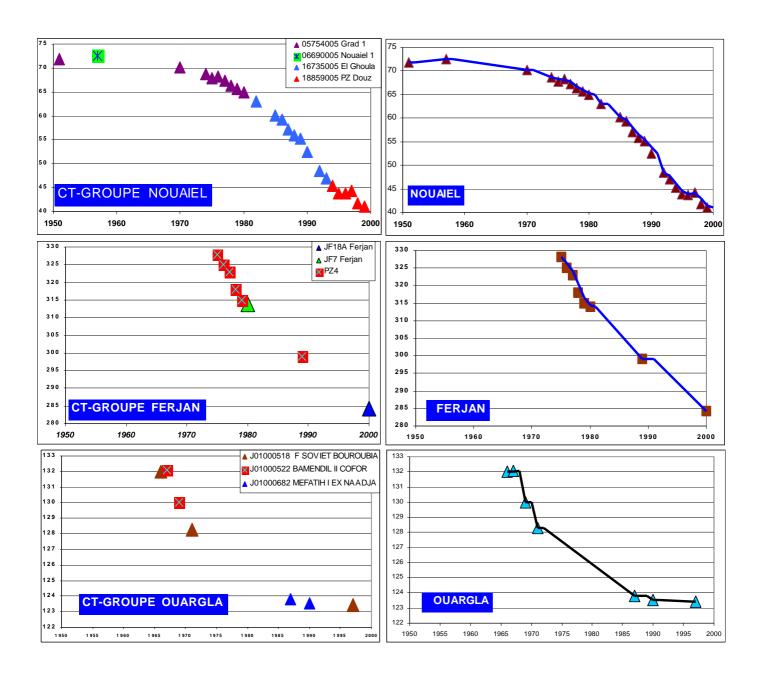
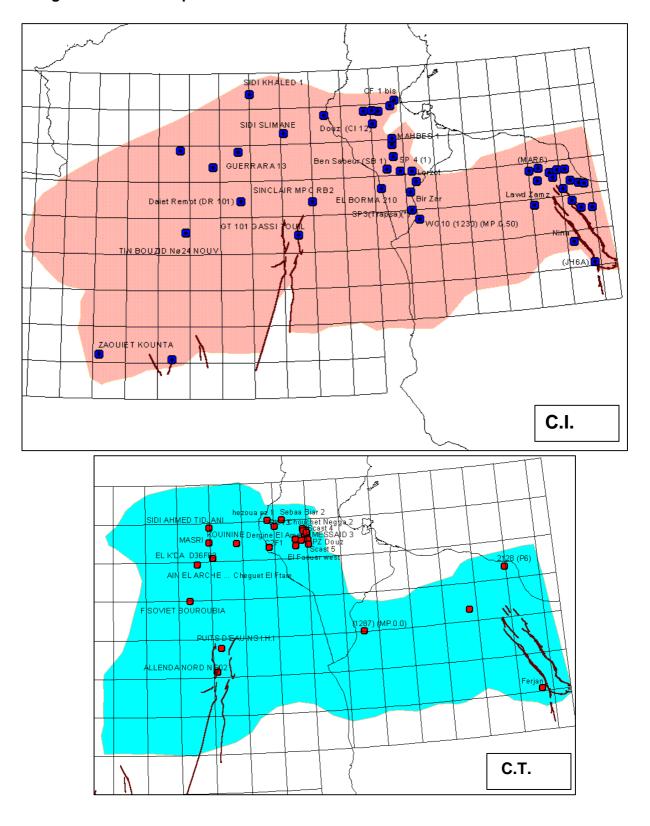



Fig. 3 : Position des points d'eau formant les réseaux de référence du CI et du CT.

2- ANALYSE DU RESEAU de REFERENCE

L'analyse du Réseau s'effectue par référence à un certain nombre d'indicateurs par lesquels il est possible d'affecter une qualification, un niveau de qualité, à chacun des points de référence du réseau. Ces indicateurs, que nous allons définir ci-après, vont concerner : la répartition spatiale des points, la répartition temporelle des mesures, et l'aptitude à la représentation d'un certain nombre de grandeurs utiles pour la gestion des eaux souterraines : débits de prélèvements, rabattements régionaux ...

2.1- Couverture Spatiale : le taux de présence intrinsèque

Il s'agit de mesurer la densité de la couverture spatiale assurée par la surveillance piézométrique. Il faut attribuer à chaque point d'eau le domaine qu'il est censé contrôler ; pour ce faire, le meilleur moyen consiste à délimiter les polygones d'influence de chacun des points par la méthode des médiatrices. Le résultat pour le CI et le CT respectivement est présenté Fig. 4 et fig.5.

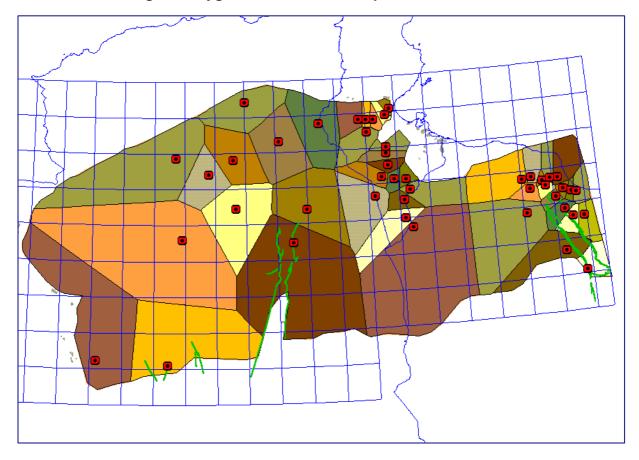


Fig. 4 : Polygones d'influence des puits témoins du CI

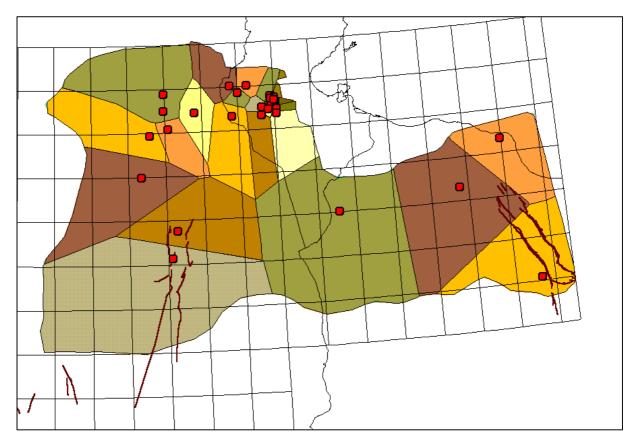


Fig. 5 : Polygones d'influence des puits témoins du CT

Le tracé des polygones d'influence permet de quantifier, par sa superficie, l'importance du domaine contrôlé par chacun des points du réseau. Les fig. qui précèdent indiquent de nombreux polygones transfrontières, ce qui n'est évidemment pas concevable y compris dans le cas d'un réseau géré en commun. En effet, il revient d'abord à chaque pays de procéder à la collecte des données de son propre territoire; c'est seulement dans une phase ultérieure que ces données sont rassemblées et analysées ensemble. Dans cette optique, le dessin des polygones est refait séparément pour chacun des pays; l'assemblage se fait ensuite par aquifère.

Comment qualifier l'état de la couverture spatiale par les points du réseau actuel ?

En l'absence de normes de couverture piézométrique, on peut imaginer que dans les régions du SASS, quels que soient leurs niveaux de connaissance, d'exploitation, ou même d'accessibilité, on ne puisse plus désormais admettre qu'il y ait moins d'un puits témoin par degré carré, soit pour simplifier 10.000Km2. Pour chacun des points du réseau, on peut alors définir un « indice de couverture spatiale » tel que :

SPAT = 10.000 / sup;

Sup.: étant la surface du polygone correspondant en Km2

Les résultats du calcul sont fournis dans les tab. 3 et 4. L'indice SPAT varie de 10 jusqu'à des valeurs inférieures à 0,1, ce qui signifie qu'un seul puits témoin peut contrôler un territoire ayant une superficie supérieure à 100.000 Km2, ce qui est notamment le cas pour

Oued Mehiguène, Tin Bouzid, In Salah, Zaouiet Kounta, Gassi Touil, et Ghadamès au Continental Intercalaire, ainsi qu'à Allenda et Puits d'eau(Gassi Touil), Mw1287 et TR/2B87 pour le Complexe Terminal.

Si l'on retient le critère de un point pour 10.000 Km2 comme couverture minimale, on verra que, au CI, 18 points sur 46 ne remplissent pas ce critère, ce qui ne représente que 40% des

points certes, mais les polygones correspondants représentent 90% en superficie de la nappe du CI. Pour le CT, et selon le même critère, ces chiffres sont respectivement de 48% des points, correspondant à 96% de territoire insuffisamment couvert par la surveillance piézométrique.

2.2- Surveillance de l'Exploitation et Contrôle des Rabattements

Dans un système aquifère dont les ressources en eau sont faiblement renouvelables, la fonction essentielle assignée à un réseau piézométrique est de bien renseigner sur le niveau d'exploitation et de contrôler convenablement l'évolution des rabattements.

On peut qualifier ou mesurer le niveau de surveillance des prélèvements par la densité de débit de chacun des polygones d'influence (Volume annuel prélevé rapporté à la superficie du polygone). En termes dimensionnels, cet indicateur représente une lame d'eau : c'est la colonne EXP du tableau, exprimée ici en mm/an et rapportée à l'exploitation de l'année 2000. Cette valeur varie de zéro pour les polygones non exploités jusqu'à un maximum de 18 mm pour le CI. Pour le Complexe Terminal, cet indice atteint des valeurs exceptionnellement élevées : il varie de zéro (Gassi Touil) jusqu'à 363 mm/an à Ras el Ain (1mm/jour).

Cet indicateur renseigne sur l'état d'exploitation mais ne permet pas de classer les piézomètres vis à vis de ce critère ; en effet, un piézomètre est « bon » s'il est implanté au cœur d'un champ captant car il fournit les rabattements les plus significatifs ; mais un piézomètre n'en est pas moins bon s'il est implanté loin des captages car il fournit alors un rabattement non influencé, et parfois dans des zones très éloignées un rabattement nul qui constitue une indication très précieuse pour précisément fournir sur le rayon d'influence des champs captants.

En termes de rabattements, la colonne Rabtot du tableau fournit le rabattement total de la série considérée, reconstitué d'après les observations de la série elle-même. Mais ce rabattement ne porte pas toujours sur l'ensemble de la période de référence 1950-2000, notamment lorsque la série est courte ou qu'elle s'arrête prématurément. On reconstitue le rabattement complémentaire en se référant soit aux points voisins jugés les plus fiables soit au rabattement restitué par le modèle, ce dernier étant censé lisser les hétérogénéités et fournir des rabattements en moyenne représentatifs (il y a bien sûr ici un certain biais dans la mesure où un grand nombre de points du réseau ont précisément servi au calage transitoire du modèle). La colonne RAB du tableau fournit le rapport de Rabtot à la valeur du rabattement au même point mais intégrée sur toute la période 1950-2000.

Ce dernier indicateur renseigne sur la capacité de la série à mesurer le rabattement de la nappe. Il varie de 0,3 à 1 ; avec de très nombreuses valeurs égales à 1 ou très proches : ce n'est rien d'autre que le résultat du regroupement des séries : les groupes de points d'eau avaient précisément pour objectif de rallonger les séries pour couvrir le maximum de rabattement possible. (Les valeurs supérieures à 1 constituent des anomalies ; il en existe deux au CT)

2.3- L'Indice de Durabilité des points du réseau

Il s'agit à présent d'estimer l'aptitude de chacune des séries à se prolonger à l'avenir. En partant du principe que les séries les plus récentes (pour couvrir les années 80 et 90 où l'on observe les plus forts débits) et les plus longues, une fois critiquées, sont toujours les meilleures à poursuivre, même si elles ont été interrompues quelques années, il faut donc trouver un indicateur de durabilité qui intègre plusieurs paramètres à la fois :

- Longévité
- Régularité
- Aptitude à la poursuite des mesures

La longévité est mesurée par la longueur de la série, en années : T.

La régularité peut être mesurée par la fréquence des mesures : rapport du nombre N de mesures annuelles¹ à la longueur totale de la période historique de référence qui est 50 ans. Quant à l'aptitude d'une série à être poursuivie à l'avenir, elle est d'autant plus forte que la série est plus actuelle : elle sera inversement proportionnelle à l'ancienneté A de la série. Si fin est l'année de l'arrêt des observations, on aura :

$$A = 2001 - fin.$$

L'indice de DURABILITE est donc :

$$DUR = (N/50) \times (T/A)$$

(DUR) peut varier de 0,01 à 50 : le maximum serait pour une série longue de 50 ans et comportant 50 mesures de niveau. En réalité, le maximum observé atteint un DUR de 26 pour le CT (Ras El Ain) et 11,7 pour le CI (CF1bis). Le minimum pour le CT est pour T/2B../87 avec DUR=0,005 pour 2 mesures en 77-79, précédé par le piézomètre Hazoua (DUR=0,04) avec 2 mesures en 98-99. Au CI, les valeurs chutent très vite : il n'existe que trois points (ou groupes de points) pour lesquels DUR est supérieur à 3 ; bien que le paramètre ancienneté soit très pénalisant au dénominateur, le nombre de mesures au CI est très faible.

Tableau 3 : Indicateurs de qualité du

	Les INDICATEURS du CONTINENTAL INTERCALAIRE																
PAYS	GROUP	NOCLAS	NOM	SUP	Qexp	Nexp	Rabtot	Nmes	Deb	Fin	Npdeb	Npfin	DensQ	SPAT E	XP	RAB	DUR
Α	0	G00900109	SIDI KHALED 1	24624	70880940	34	80	2	1956	1970	381	351	2879	0,4	3	0,4	0,0
Α	0	H01200037	BOU AROUA BAR 1	22630	946080	2	25	2	1970	1998	267,9	247,8	42	0,4	0	0,8	0,4
Α	0	100700008	OUED MEHAIGUENE AB 1	73347	1419120	1	5	2	1955	1990	481	477,7	19	0,1	0	0,7	0,1
Α	0	K01200001	SINCLAIR MPC RB2	64605	34901207	31	23	3	1962	1998	333	312,8	540	0,2	1	0,9	0,7
Α	0	K00900004	Daiet Rempt (DR 101)	36750	24125040	10	10	2	1960	1990	424,5	417,4	656	0,3	1	0,7	0,1
Α	0	L00700062	TIN BOUZID N°24 NOUV	139138	61825620	81	8	3	1958	1994	401	395,3	444	0,1	0	0,7	0,3
Α	100	O00700044	In Salah 1 (IS 101)	68185	51078708	76	10	5	1956	1991	281,3	272,05	749	0,1	1	0,9	0,4
Α	101	J00800021	NOUMERATE AERODROME	17526	117159804	100	20	4	1956	1998	440,71	421,68	6685	0,6	7	1,0	1,1
Α	200	O00400139	ZAOUIET KOUNTA	77219	181919046	372	5	5	1958	1996	218	214,6	2356	0,1	2	0,7	0,8
Α	500	101100437	SIDI SLIMANE	28857	63072000	18	100	5	1956	1998	357,93	259,5	2186	0,3	2	1,0	1,4
Α	700	L01100011	GT 101 GASSI TOUIL	138698	20185248	15	10	4	1962	1998	350	341,77	146	0,1	0	0,8	1,0
Α	900	N00400270	GUERRARA 13	22388	35126175	20	50	3	1954	1993	428,16	382,8	1569	0,4	2	0,9	0,3
Т	0	19484005	Behaier (CI 9)	1976	2227342	5	60	5	1986	2000	190,6	155,8	1127	5,1	1	0,6	1,5
Т	0	X00700212	Ben Sabeur (SB 1)	5219	210000	1	35	3	1956	2000	312	286,6	40	1,9	0	0,7	2,7
Т	0	19432005	MAHBES 1	4151	174917	2	12	5	1985	1999	293,5	284,2	42	2,4	0	0,8	0,8
Т	0	SP 4 N	SP 4 (1)	3185	567036	8	7	4	1963	2000	307,5	301,6	178	3,1	0	0,8	3,0
Т	0	19998005	Zemlet El bidha	1792	0	0	40	3	1993	2000	84,2	73,8	0	5,6	0	0,3	0,5
Т	0	19504005	Bir Zar	2865	0	0	8	2	1982	2000	306,1	303,4	0	3,5	0	0,3	0,8
Т	0	06368005	Oued Abdallah 2	2754	580955	17	12	4	1964	2000	306,2	295,4	211	3,6	0	0,9	3,0
Т	0	07000005	SP3(Trapsa)(*)	6516	202953	4	7	3	1956	2000	325,1	318,2	31	1,5	0	1,0	2,7
Т	0	06511005	Lorzot	978	23396	3	15	4	1955	1982	316,8	312,6	24	10,2	0	0,3	0,1
Т	100	18781005	EL BORMA 210	3395	7236768	11	40	6	1963	2000	311,3	270	2132	2,9	2	1,0	4,6
Т	200	19190005	CF 1 bis	1537	27428131	12	80	13	1956	2000	157,39	82,4	17845	6,5	18	0,9	11,7
Т	300	19450005	Douz (Cl 12)	8567	9199689	5	60	6	1986	2000	261,88	223	1074	1,2	1	0,6	1,8
Т	400	19452005	Steftimi (CI 7)	1829	6116601	4	60	7	1986	2000	234,88	212,8	3344	5,5	3	0,4	2,1
Т	500	20109005	S.Lahad (CI 17)	13893	10424722	7	50	5	1986	2000	234,88	212,8	750	0,7	1	0,4	1,5
Т	800	19009005	Ksar Ghilane 3 bis	4421	4770912	16	35	9	1951	2000	297	262,8	1079	2,3	1	1,0	9,0
Т	900	X00700213	Bir Zebbas (BZ1)	2376	331568	2	12	4	1966	2000	306,8	295,75	140	4,2	0	0,9	2,8
L	0	WG10	WG10 (1230) (MP.0.50)	94325	19537200	7	9	11	1975	1995	296,9	288,7	207	0,1	0	0,9	0,8
L	0	T/2B/103/0/76	Lawd Zamz	47392	0	1	35	2	1979	2000	265,7	230,5	0	0,2	0	1,0	0,9
L	0	SIQ1	Fawar al Khadem	3571	5000000	2	60	2	1978	2000	199,7	138	1400	2,8	1	1,0	0,9
L	0	3.83	Mardum	1122	2000000	1	37	2	1978	2000	140,4	103,5	1783	8,9	2	1,0	0,9
L	0	T/2A/0043/0/84	Taouargha	2790	6000000	1	40	2	1987	2000	72,5	48,4	2151	3,6	2	0,6	0,6
L	0	T/2B/0060/0/77	Wadi Zamzam	1303	8000000	1	60	3	1977	2000	114,5	61,6	6140	7,7	6	0,9	1,4
L	0	WH 1	Wadi Whashkah	1202	3000000	1	40	2	1976	2000	98,4	58,1	2496	8,3	2	1,0	1,0
L	0	BAK-2	B. Kabir	4015	2000000	1	40	2	1977	2000	154,3	114,3	498	2,5	0	1,0	1,0
L	0	BAK-4	B. Kabir	2456	3500000	2	40	2	1976	2000	157	117	1425	4,1	1	1,0	1,0
L	0	BAK-1	B. Kabir	6716	0	0	40	2	1978	2000	159	119	0	1,5	0	1,0	0,9
L	100	N4 (44/81)	Nina	19735	9700000	2	35	4	1981	2000	371	336	492	0,5	0	1,0	1,6
L	101	T/2B/0010/0/85	Nemwah	2940	0	0	60	3	1977	2000	154,7	94,4	0	3,4	0	1,0	1,4
L	110	JH6A	(JH6A)	7424	14016000	1	35	5	1975	2000	327,5	292,92	1888	1,3	2	1,0	2,6
L	200	K-8	Wadi Bay Kabir	4389	5000000	1	50	3	1975	2000	162	115,07	1139	2,3	1	0,9	1,6
L	400	ZZ 1	ZZ 1	3199	7500000	1	40	5	1972	2000	134	94,36	2344	3,1	2	1,0	2,9
L	600	T/2B/0031/0/84	Sadadah	1606	0	0	35	3	1985	2000	161,64	136,4	0	6,2	0	0,7	1,0
L	700 800	B-5 (1/81) MAR6	Bani walid (B-5 (1/81)) (MAR6)	23400 5263	16193000 7000000	5	35 50	4	1982 1978	2000	238,2 185,68	204 139,15	692 1330	0,4 1,9	1	1,0 0,9	1,5 1,8
ᆫ	800	IVIARD	(IVIANO)	5263	7000000	4	50	4	19/8	2000	100,08	139,15	1330	1,9	1	υ,9	1,6

¹ Lors de l'élaboration de la Base de Données du SASS, il a été convenu de retenir une valeur piézométrique par année

Tableau 4 : Indicateurs de qualité du Réseau CT

	Les INDICATEURS du COMPLEXE TERMINAL																
PAYS	GROUP	NOCLAS	NOM	SUP	Qexp	Nexp	Rabtot	N_mes	Deb	Fin	Npdeb	Npfin	DensQ	SPAT	EXP	RAB	DUR
Α	100	L01100012	ALLENDA NORD N 602	137876	5059951	20	1	4	1957	1990	169	168	37	0,1	0	1,0	0,2
Α	200	K01100022	PUITS D'EAU(G.Touil)	67122	0	0	0,5	3	1960	1990	145,21	144,8	0	0,1	0	0,8	0,2
Α	430	J01000518	F SOVIET BOUROUBIA	49420	97165283	263	10	7	1966	1997	131	123,42	1966	0,2	2	0,8	1,1
Α	500	101100076	EL K'DA D36F63	10913	155987228	266	35	4	1970	1995	88,59	55,2	14294	0,9	14	1,0	0,3
Α	600	H01100530	KOUININE	45792	84309981	142	35	5	1961	1995	77,97	51,95	1841	0,2	2	0,7	0,6
Α	700	H01100840	MASRI	34652	292250958	371	40	5	1953	1991	41,35	12,7	8434	0,3	8	0,7	0,4
Α	800	H01100356	SIDI AHMED TIDJANI	34652	292250958	371	35	7	1955	1995	31,94	-0,2	8434	0,3	8	0,9	1,0
Α	900	101000037	AIN EL ARCHE	34071	25699302	40	1	4	1957	1990	98,09	97,17	754	0,3	1	0,9	0,2
T	0	20470005	hezoua pz 1	2704	26598147	39	20	2	1998	1999	38,8	37,3	9837	3,7	10	0,1	0,0
Т	0	18755005	Dergine El Ameur	1451	3990046	8	30	20	1979	2000	68,7	48,5	2750	6,9	3	0,7	8,8
Т	100	19915005	C2F1	2516	22850838	28	20	16	1977	1999	80	63,51	9082	4,0	9	0,8	3,7
Т	101	05713005	Scast 4	641	21933633	39	35	16	1951	2000	66,4	31,58	34218	15,6	34		16,0
Т	111	18859005	PZ Douz	461	86227483	50	32	25	1951	1999	71,9	40,99	187044	21,7	187	1,0	
Т	120	06689005	Guidma 1	365	17190755	18	22	26	1957	2000	70,68	48,68	47098	27,4	47	1,0	
Т	130	14021005	MESSAID 3	307	62046236	39	42	15	1952	1999	62,49	21,74	202105	32,6	202		7,2
Т	140	13995005	Scast 5	30480	1886979	8	40	14	1972	1994	76,28	44,1	62	0,3	0	-,-	0,9
Т	300	17675005	El Faouar west	6701	11682580	22	25	20	1969	1997	70,49	53,53	1743	1,5	2	0,7	2,9
Т	400	13116005	PK 13	1842	36406228	36	30	9	1965	1999	53,2	26,5	19765	5,4	20	0,9	3,2
T	500	09456025	Sebaa Biar 2	3923	73094223	89	25	28	1954	1995	53,3	34,46	18632	2,5	19	0,8	3,9
Т	600	19181005	Chouchet Negga 2	3173	50087809	78	35	17	1950	2000	55,3	20,01	15786	3,2	16	1,0	17,3
Т	700	06756005	Ras El Aïn 1	80	29004092	28	30	26	1951	2000	49,96	18,64	362551	125,0	363	1,0	26,0
Т	800	18826005	GUETTAYA 4 bis	200	9497574	16	35	21	1972	1999	58,96	29,91	47488	50,0	47	0,8	5,9
Т	900	05692005	RAHMAT 2	658	4111956	10	40	21	1951	2000	62,35	25,33	6249	15,2	6	-,-	21,0
L	0	MW-1287	(1287) (MP.0.0)	74649	0	0	0,2	14	1974	2000	4	3,08	0	0,1	0	4,6	7,6
L	0	T/2B/0022/0/87	T/2B/0022/0/87	76748	12000000	5	0,2	2	1977	1979	278,1	249,5	156	0,1	0	143,0	0,0
L	100	JF18A	Ferjan	44643	107914586	5	50	8	1975	2000	328	284,3	2417	0,2	2	0,9	4,2
L	300	MW-2128	Zamzam-2128 (P6)	21095	112600000	19	18	20	1974	2000	-2,77	-18,4	5338	0,5	5	0,9	10,8

3- CONSOLIDATION DU RESEAU DE REFERENCE:

3.1- Densification spatiale

90% du domaine du SASS, aussi bien CI que CT, était mal ou pas du tout couvert par le réseau piézométrique. La première mesure visant à consolider le réseau doit donc viser à améliorer la densité de la couverture spatiale. Il serait sans doute vain de vouloir passer à des propositions concrètes à ce sujet sur une base purement documentaire, mais on peut raisonnablement admettre qu'une couverture de un point pour 10.000 Km2 doit constituer un objectif plausible à court terme, d'autant que (cf. §3.3 « couverture des risques ») les zones les moins bien couvertes sont précisément celles où l'étude du SASS propose d'orienter le plus gros des prélèvements à venir et notamment des investigations à mettre en œuvre.

3.2- Adéquation au calage du Modèle SASS :

Une densité spatiale plus fournie permettra sans doute à l'avenir, lorsque le besoin se fera sentir d'une reprise du calage du modèle en transitoire sur un nouvel historique, d'obtenir une meilleure représentativité du modèle et donc une plus grande fiabilité des résultats en simulations.

Par ailleurs, l'un des principaux résultats de l'étude SASS a été de montrer que l'observation des rabattements dans les zones à **surface libre de la nappe**, fussent-elles très éloignées des champs de pompage, constituait l'une des principales clés d'une meilleure fiabilité en prévision.

Comment se situent les points du réseau actuel de référence par rapport à ces régions à surface libre ? La fig.6 permet de s'en faire une idée précise.

Eau CI, et en dehors des deux points d'Adrar (Zaouiet Kounta; In Salah) qui contrôlent le Touat-Tidikelt, la grande réserve à surface libre du Continental Intercalaire de l'Erg Occidental, véritable château d'eau en puissance du SASS, n'est contrôlée que par deux puits témoins: Oued Mehéguène et Tin BouZid, points dont nous avons déjà vu qu'ils possédaient les pires coefficients de couverture spatiale. Le contrôle de toute cette région du CI est à renforcer considérablement.

Concernant la nappe libre du CT, qui représente des étendues gigantesques, notamment dans le sud tunisien et surtout algérien (alors que la certitude sur la réalité d'une surface libre sous la Hamada El Hamra reste à renforcer), elle n'est contrôlée que par deux points d'eau (Puits d'eau Gassi Touil et Alenda Nord) indiquant tous deux des rabattements certes inférieurs à 1m en 50 ans (respectivement 0,45 m et 1m), mais qui demandent à être confirmés par un suivi plus régulier.

Dans le chapitre des améliorations du Modèle, un autre domaine où la surveillance piézométrique doit apporter une contribution est le suivi de la recharge. En effet, l'un des points faibles de tous les modèles construits dans la région, y compris celui du SASS, est d'être passé trop rapidement sur la recharge. De plus, aucun des points du réseau piézométrique ne se trouve sur les aires de recharge de la nappe, que ce soit le CI ou le CT. Dans le choix de l'emplacement des nouveaux puits témoins, l'objectif du suivi de la recharge doit être pris en compte.

SIDI KHALED 1 (ent) Douz (d SIDI MANE AERODROME Dalet Rempti (DR 101) SINCLAIR MPC R C.I. ◆ Nappe Libre Nappe Captive Reseau-Cl Reseau-CT C.T.

Fig. 6 : Position des puits témoins et limite nappe libre - nappe captive dans le CI et le CT

3.3- Couverture des RISQUES

La fig.7, où les rabattements totaux (somme du scénario zéro et du dernier scénario simulé, respectivement Cl8 pour le Cl et CT5 pour le CT) sont représentés en bleu (supérieurs à 100m au Cl et supérieurs à 40m au CT) présente la carte des risques du SASS. Les risques pressentis dans la région comportent notamment :

Bassin Artesien Exutoire tunisien рменал DERBARA 13 AERODROME **Bassin Occidental** (1230) (MP.0.50) TIN BOUZE 1424 NO UV ASSIT OUIL **Ghadames Chotts Khoms - Zliten √** Reseau-Cl ✓ Rabattement2050-CI 100 - 500 No Data **√** Reseau-CT ✓ Rab attement2050-CT 40 - 180 No Data **Oued Mya Ferjan**

Fig. 7 : La Carte des Risques du SASS et le Réseau Piézométrique de Référence

3.3.1- L'Exutoire Tunisien (CI)

On peut considérer en première analyse que l'Exutoire tunisien se trouve correctement couvert en terme de surveillance piézométrique. En effet, son périmètre(fig.7) se trouve d'ores et déjà contrôlé par six puits témoins du réseau de référence actuel. L'unique mesure qui permettrait d'accroître l'efficience du contrôle consisterait à dédier intégralement l'un des forages du groupe CF à la surveillance piézométrique en le dotant d'un équipement de mesure permanent.

3.3.2- Le Bassin Artésien (CI)

Sidi Slimane, Guerrara et Noumerate: tels sont les points d'eau du réseau actuel qui permettraient de continuer à suivre l'évolution de l'artésianisme dans la région de l'Oued Rhir et El Oued. C'est bien peu pour un périmètre où les rabattements supplémentaires (par rapport à 2000) attendus dépasseront 100m sur plus de 80.000 Km2. Un renforcement du réseau dans ce secteur parait nécessaire.

3.3.3- Le Bassin de Ghadamès (CI)

Le rabattement prévu dans ce secteur dépasserait 100m sur un domaine de près de 50.000 km2. Là aussi, la surveillance est aujourd'hui dérisoire ; elle n'est assurée que par deux points : WG10 et SP3. Le renforcement du réseau s'impose également.

3.3.4- Le Bassin Occidental (CI)

Ici, l'acuité du problème se résume en trois chiffres :

- -Trois cent mille Km2 de superficie de nappe délimitent ce bassin
- -Trois milliards de m3/an de prélèvements additionnels en 50 ans ont été simulés sur le Modèle
- -Trois puits témoins composent le réseau actuel de surveillance (Tin Bouzid, Zaouiet Kounta, In Salah)

3.3.5- Les Chotts algéro-tunisiens (CT)

Par rapport au risque « chotts », le niveau de surveillance piézométrique paraît nettement satisfaisant dans la Nefzaoua avec 11 puits témoins sur moins de 2000 Km2. Ce niveau est bien moins fourni dans le Djerid (Nord du Chott Djerid) avec seulement 3 puits témoins, et encore moins dans la vallée de l'Oued Rhir et autour des chotts Merouane et Melghir avec un total de six points pour toute cette région.

3.3.6- L'Oued Mya

Ce nouveau champ captant à reconnaître, simulé sur le modèle à 600 Millions m3/an, n'est encore contrôlé par aucune surveillance piézométrique : le puits témoin le plus proche aujourd'hui (forage soviétique, Gassi Touil) se trouve à plus de 100 Km du site.

3.3.7- Ferjan

Les rabattements supplémentaires attendus dépassent 50m. Il faudra y renforcer la surveillance, actuellement assurée par un seul groupe de puits.

3.3.8 - Khoms -Zliten

On s'attend à ce que cette zone côtière connaisse de très importants rabattements si les scénarios simulés sur le modèle (comblement des déficits) étaient réalisés : en 2050, le niveau de la nappe serait à une cote de plus de 50m sous le niveau de la mer. Un monitoring très sévère doit être mis en place dés aujourd'hui.

4- DEVENIR DU RESEAU DE REFERENCE

Comment doit-on procéder à présent pour assurer la poursuite des observations piézométriques dans les meilleures conditions ? comment doit-on choisir les points d'eau qui vont constituer le réseau de surveillance du SASS ? Quels sont les points du réseau actuel que l'on doit conserver, et ceux que l'on doit penser à remplacer ? Où doit-on remplacer les forages par des piézomètres pour assurer une plus grande « autonomie » des mesures vis à

vis des régimes d'exploitation ? Quels sont les points nouveaux à implanter ? Au terme de l'analyse qui vient d'être présentée, une réponse adéquate à toutes ces questions nécessite un traitement au cas par cas. On peut toutefois tenter quelques éléments de réponses à l'examen de quelques caractéristiques du réseau.

4.1- Poursuivre les séries avec les points les plus récents :

La durée de vie des forages étant limitée, il paraît raisonnable de choisir les points les plus jeunes du réseau actuel pour assurer la poursuite des séries historiques. Malheureusement, l'examen des dates de création indique des âges généralement élevés aussi bien au CI qu'au CT (tab. 5) : malgré les informations manquantes, on peut en déduire que près de quatre forages sur cinq ont plus de 20 ans d'âge, et un forage sur trois a plus de quarante ans. Un grand nombre de « tuteurs » âgés du réseau devront en conséquence être remplacés : il faudra s'y préparer et sélectionner d'ores et déjà les points d'eau auxquels doit être assignée cette fonction. On peut considérer par ailleurs que, sauf vérification contraire sur site, les forages de 30 ans peuvent continuer à assurer cette fonction.

Tableau 5 : dates de réalisation des points d'eau du réseau ;resp. CI et CT

N°	PAYS	NOM	DATFIN	Ν°	PAYS	NOM	DATFIN
1	Α	GUERRARA 13	19/12/93	12	L	(JH6A)	
2	Α	BOU AROUA BAR 1	11/08/70	13	L	(MAR6)	
3	Α	GT 101 GASSI TOUIL	01/01/62	14	L	Lawd Zamz	
4	Α	SINCLAIR MPC RB2	01/01/62	15	L	Taouargha	
5	Α	Daiet Rempt (DR 101)	02/10/60	16	L	Wadi Zamzam	
6	Α	SIDI SLIMANE	05/07/60	17	L	Nemwah	
7	Α	ZAOUIET KOUNTA	01/01/60	18	L	Sadadah	
8	Α	TIN BOUZID No24 NOUV	21/04/58	1	T	Zemlet El bidha	04/10/93
9	Α	NOUMERATE AERODROME	01/01/56	2	Т	Bir Zar	31/12/87
10	Α	SIDI KHALED 1	01/01/56	3	Т	Behaier (CI 9)	03/11/86
11	Α	OUED MEHAIGUENE AB 1	01/01/55	4	Т	Steftimi (CI7)	05/09/86
12	Α	In Salah 1 (IS 101)		5	Т	Douz (CI 12)	22/07/86
1	L	Mardum	01/01/83	6	Т	CF 1 bis	06/02/84
2	L	Bani walid (B-5 (1/81))	01/01/82	7	Т	Ksar Ghilane 3 bis	01/04/81
3	L	Nina	01/01/81	8	Т	EL BORMA 210	01/01/78
4	L	Fawar al Khadem	01/01/78	9	Т	SP3(Trapsa)(*)	31/12/60
5	L	B. Kabir	01/01/78	10	Т	MAHBES 1	
6	L	B. Kabir	01/01/77	11	Т	S.Lahad (CI17)	
7	L	Wadi Bay Kabir	01/01/77	12	Т	Ben Sabeur (SB 1)	
8	L	Wadi Whashkah	01/05/76	13	Т	SP 4 (1)	
9	L	B. Kabir	01/01/76	14	Т	Oued Abdallah 2	
10	L	ZZ1	01/01/72	15	Т	Lorzot	
11	L	WG10 (1230) (MP.0.50)		16	Т	Bir Zebbas (BZ1)	

N°	PAYS	NOM	DATFIN	N°	PAYS	NOM	DATFIN
1	A	KOUININE	25/11/77	2	Т	Chouchet Negga 2	10/12/83
2	Α	MASRI	01/01/69	3	Т	Dergine El Ameur	09/11/77
3	Α	F SOVIET BOUROUBIA	24/04/66	4	Т	El Faouar west	19/01/77
4	Α	AIN EL ARCHE . Cheguet El Ftaie	01/01/66	5	Т	MESSAID 3	06/01/73
5	A	PUITS D'EAU NS I.H.I	27/08/60	6	Т	Scast 5	31/08/72
6	Α	ALLENDA NORD N 602	18/12/57	7	Т	PK 13	02/07/71
7	Α	EL K'DA D36F63	26/04/53	8	Т	Ras El A <n 1<="" td=""><td>13/02/59</td></n>	13/02/59
8	A	SIDI AHMED TIDJANI	10/07/52	9	Т	Guidma 1	06/04/57
1	L	Ferjan	01/01/76	10	Т	RAHMAT 2	09/03/51
2	L	(1287) (MP.0.0)		11	Т	Scast 4	17/01/49
3	L	T/2B/0022/0/87		12	Т	hezoua pz 1	
4	L	2128 (P6)		13	Т	C2F1	
1	Т	PZ Douz	05/02/92	14	Т	Sebaa Biar 2	
				15	Т	GUETTAYA 4 bis	

4.2-Transformer en Piézomètres les Forages les moins profonds :

Le remplacement des forages par des piézomètres s'effectue d'autant plus aisément que la profondeur de captage est faible. Au Complexe Terminal, cette opération ne devrait pas rencontrer de difficulté particulière (tab. 6), mais au CI, les captages sont généralement très profonds, excepté dans le Bassin Occidental.

Tableau 6 : profondeurs totales des points d'eau du réseau ; resp. Cl et CT

N°	PAYS	NOM	PROINV	N°	PAYS	NOM	PROINV
1	Α	ZAOUIET KOUNTA	102	12	L	(JH6A)	
2	Α	TIN BOUZID No24 NOUV	145	13	L	(MAR6)	
3	Α	GUERRARA 13	180	14	L	Lawd Zamz	
4	Α	NOUMERATE AERODROME	400	15	L	Taouargha	
5	Α	Daiet Rempt (DR 101)	605	16	L	Wadi Zamzam	
6	Α	GT 101 GASSI TOUIL	942	17	L	Nemwah	
7	Α	SINCLAIR MPC RB2	1363	18	L	Sadadah	
8	Α	OUED MEHAIGUENE AB 1	1640	1	T	Ksar Ghilane 3 bis	680
9	Α	SIDI SLIMANE	1776	2	T	EL BORMA 210	750
10	Α	SIDI KHALED 1	2600	3	Т	SP3(Trapsa)(*)	819
11	Α	BOU AROUA BAR 1	2780	4	Т	CF 1 bis	824
12	Α	In Salah 1 (IS 101)		5	Т	Bir Zar	963
1	L	Nina	836	6	Т	MAHBES 1	978
2	L	Bani walid (B-5 (1/81))	975	7	Т	Zemlet El bidha	1500
3	L		1003	8	Т	Behaier (CI 9)	1621
4	L	Fawar al Khadem	1102	9	Т	Steftimi (CI7)	1987
5	L	Wadi Whashkah	1196	10	T	Douz (CI 12)	2080
6	L	Mardum	1210	11	Т	S.Lahad (CI 17)	2500
7	L	B. Kabir	1220	12	Т	Ben Sabeur (SB 1)	
8	L	B. Kabir	1225	13	Т	SP 4 (1)	
9	L	B. Kabir	1234	14	Т	Oued Abdallah 2	
10	L	Wadi Bay Kabir	1278	15	Т	Lorzot	
11	L	WG10 (1230) (MP.0.50)		16	Т	Bir Zebbas (BZ1)	

N°	PAYS	NOM	PROINV	N°	PAYS	NOM	PROINV
1	Α	PUITS D'EAU NS I.H.I	90	2	Т	RAHMAT 2	88
2	Α	F SOVIET BOUROUBIA	94	3	Т	Guidma 1	98
3	Α	AIN EL ARCHE . Cheguet El Ftaie	97	4	T	Ras El A <n 1<="" td=""><td>98</td></n>	98
4	Α	MASRI	132	5	T	Chouchet Negga 2	99
5	Α	EL K'DA D36F63	195	6	T	Scast 4	103
6	Α	ALLENDA NORD N 602	210	7	Т	Scast 5	150
7	Α	SIDI AHMED TIDJANI	210	8	T	GUETTAYA 4 bis	156
8	Α	KOUININE	314	9	Т	El Faouar west	172
1	L	Ferjan	194	10	T	Dergine El Ameur	200
2	L	(1287) (MP.0.0)		11	T	MESSAID 3	208
3	L	T/2B/0022/0/87		12	Т	C2F1	343
4	L	2128 (P6)		13	Т	PK 13	605
1	Т	PZ Douz	80	14	Т	hezoua pz 1	
			·	15	Т	Sebaa Biar 2	·

5- CONCLUSION

Au terme d'une première analyse de l'ensemble des observations piézométriques enregistrées dans la Base de Données du SASS, il a été possible, grâce à des regroupements de forages sur des critères de proximité et de similitude de comportement, d'identifier un **Réseau de Référence Historique** composé de 73 points d'eau : 46 au CI et 27 au CT. La répartition par pays, qui n'entrait pas dans les critères de sélection, est globalement assez équilibrée : 20 points en Algérie, 22 en Libye, 31 en Tunisie. Par contre, la répartition des puits témoins dans l'espace du SASS est très inégale : elle est en moyenne très faible, de l'ordre de 1 point pour 22.000 Km²; et plus de 90% du SASS est couvert par moins de 1 point aux 10.000 Km².

Par ailleurs, l'examen des zones à risques a permis d'identifier les secteurs où une densification du réseau paraît nécessaire à court terme : ce sont les secteurs de risque de dégradation de qualité de l'eau (Chotts, Golfe de Syrte), les zones de tarissement à contrôler (Exutoire tunisien, Artésianisme), ainsi que les régions d'extensions nouvelles de champs de captage (Ghadames, Oued Mya, Bassin Occidental) où d'importantes modifications des

écoulements sont prévues. La gestion à venir des points du réseau de référence doit se faire au cas par cas sur le terrain, que ce soit pour l'implantation des points nouveaux dans les secteurs non couverts, ou pour le choix des points d'eau existants qui auront pour fonction d'assurer la poursuite et la pérennisation des séries piézométriques du SASS.

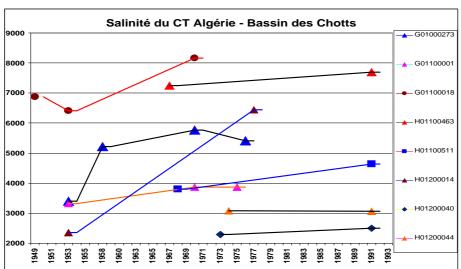
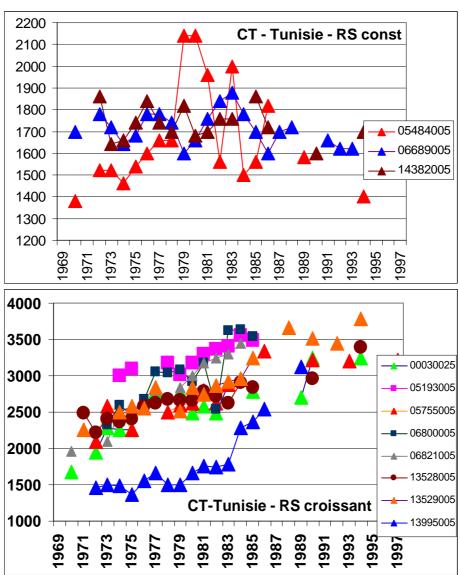
2^e PARTIE

LE RESEAU QUALITE DU SASS

Le Réseau Qualité du SASS

Bien que toutes les régions du SASS soient concernées par les risques de salinisation des eaux, c'est la région des chotts au CT qui paraît être la plus exposée. Une première analyse des historiques de salinités disponibles sur ce secteur dans la base de données SASS autorise les observations suivantes :

- La table « Qualité » de la BD comporte 4600 enregistrements : 800 au CI et 3800 au CT.
 Par pays, ces enregistrements se répartissent ainsi : 1600 en Algérie, 200 en Libye, 2800 en Tunisie.
- Si l'on s'intéresse aux historiques de salinité (Résidu sec), notamment au Complexe Terminal, l'examen de la BD permet d'identifier au total 269 points d'eau présentant au minimum deux valeurs de RS mesurés à des dates différentes : 39 en Algérie, 230 en Tunisie, aucun en Libye.
- En Algérie, les séries historiques sont peu nombreuses et peu fournies : la fréquence des mesures dans la série est peu élevée. On ne peut réellement parler d'une armature préexistante de réseau qualité, bien que toutes les mesures effectuées convergent vers une tendance générale à l'augmentation progressive des salinités, plus ou moins forte certes. Le réseau qualité reste à concevoir.
- En Tunisie, la densité des mesures aussi bien dans le temps que dans l'espace est assez confortable et le réseau de mesure de la qualité peut être considéré comme étant d'ores et déjà installé dans la région des Chotts. Sur les historiques enregistrés, on peut constater que la tendance à l'augmentation des salinités est générale. Toutefois, un certain nombre de forages, certes minoritaires, dérogent à cette règle. Mais le résultat le plus inattendu semble être le fait que les points d'eau dont la salinité est la plus stable se trouvent être précisément ceux qui sont les plus proches du Chott Djérid, ceux précisément qui paraissaient être les plus exposés au risque de salinisation. Le diagnostic de la genèse du sel et de l'évolution des salinités dans la nappe du CT reste à élucider : la mise en place, la rationalisation et l'exploitation d'un réseau permanent de suivi de la qualité contribuera à améliorer nos connaissances qui sont dans ce domaine encore embryonnaires : c'est bien le moment propice pour investir dans l'acquisition des informations.

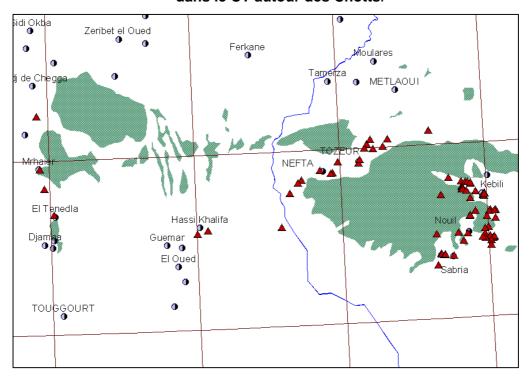

Fig. 8 : Evolution des salinités au CT en Algérie

Fig. 9 : Evolution des salinités au CT en Tunisie

Si l'on veut se limiter à l'étude des tendances lourdes sur vingt ans, il faut et suffit de disposer d'une valeur au départ, sur une tranche assez large pour augmenter les probabilités d'existence (les années 1970 à 1980) et d'une valeur à l'arrivée (années 1994 à 2000). La population qui remplit ces deux critères est fort réduite : elle se limite à 70 points d'eau en Tunisie (Nefzaoua : 54, Djérid : 16) et 7 points d'eau en Algérie. Le tableau ... présente ces informations. Sur un plan cartographique, les variations spatiales de salinité entre 1980 et 2000 sont dessinées fig.10 ; Elles confirment bien les anomalies des graphiques fig.9.

Fig. 10 : Variation de salinité (RS en g/L) entre 1980 et 2000 dans le CT autour des Chotts.

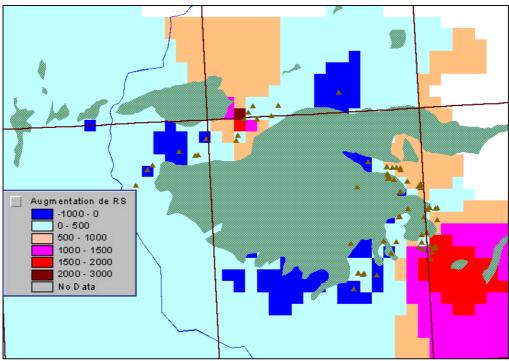


Tableau 7 : évolution des salinités du Complexe Terminal entre 1980 et 2000

Région	NOM	NOCLAS	RS 80	RS 99	DRS	Région	NOM	NOCLAS	RS 80	RS 99	DRS
Nefzaoua	Fatnassa 2	14378	3640	2580	-1060	Nefzaoua	Tarfaîet El Kroub Stil	13551	1140	1920	780
Nefzaoua	Bou Abdallah 1	9632	3260	3620	360	Nefzaoua	Tarfaîet El Kroub	6522	1580	2840	1260
Nefzaoua	Bou Abdallah 2	9653	2920	4200	1280	Nefzaoua	Sabria 2	17609	1720	1460	-260
Nefzaoua	El Gléa 1	13529	2840	3940	1100	Nefzaoua	El Faouar west	17675	1760	1640	-120
Nefzaoua	Oued Zira 2	16731	2460	3560	1100	Nefzaoua	El Faouar 3	11334	1360	1320	-40
Nefzaoua	Ziret Louhichi	13528	2640	3600	960	Nefzaoua	El Faouar 4	19343	1500	1600	100
Nefzaoua	Zt.Oul.Touati	14658	2620	3540	920	Nefzaoua	El Faouar 1	5571	1560	1800	240
Nefzaoua	Negga 4	9617	2040	1920	-120	Nefzaoua	El Faouar 2	5484	1580	1670	90
Nefzaoua	Negga 5	16703	2100	2004	-96	Nefzaoua	Guidma 1	6689	1660	1620	-40
Nefzaoua	Negga 6	18774	1980	2140	160	Nefzaoua	Bechni	18681	1820	1900	80
Nefzaoua	Negga 2	72	2040	1820	-220	Nefzaoua	Blidette 3	18746	1880	1859	-21
Nefzaoua	Negga 1	47	2040	2049	9	Nefzaoua	Ben Zitoun 2	18641	1760	1730	-30
Nefzaoua	PIEZ.Negga	18780	2060	2000	-60	Nefzaoua	Ben Zitoun 1 bis	19053	1820	1900	80
Nefzaoua	telmine 2	5585	1860	2600	740	Nefzaoua	Dergine El Ameur	18755	1700	1520	-180
Nefzaoua	Guettaya 7 bis	18851	1760	1889	129	Nefzaoua	El Hsay 4	6815	2880	5222	2342
Nefzaoua	Guettaya 3	14017	1900	1880	-20	Djerid	El Hamma 4	06922005	4665	4520	-145
Nefzaoua	Guettaya 1	73	1980	1860	-120	Djerid	El Hamma 7	08837005	6230	6220	-10
Nefzaoua	Kébili Ouest	18475	1780	1760	-20	Djerid	Zaouiet El Arab	09495035	1720	1900	180
Nefzaoua	Dar El Gaied	13993	2420	2760	340	Djerid	Oued Dghouumes 2	13991005	4530	4960	430
Nefzaoua	Dar Kouskoussi	5193	3280	4660	1380	Djerid	El Moncef 3	14137005	2260	2380	120
Nefzaoua	Ras El Aïn 1	6756	2360	3039	679	Djerid	Sedada 6	14626005	1845	1900	55
Nefzaoua	Ras EL Aïn 2	18993	1640	3360	1720	Djerid	Sif El Akhdar	14628005	2255	2320	65
Nefzaoua	Ras El Aïn 4	19003	2260	1940	-320	Djerid	Chouchet Zerga	16695005	2940	3040	100
Nefzaoua	Scast 4	5713	1660	2140	480	Djerid	Nefta Sonede	17622005	3540	2620	-920
Nefzaoua	Scast 3	387	1560	2260	700	Djerid	Oued Tozeur 5	18650005	2173	2600	427
Nefzaoua	Chott salhia 1	12320	1560	1439	-121	Djerid	Hamma 15	18786005	2140	7400	5260
Nefzaoua	Chott salhia 2	13997	1540	1380	-160	Djerid	Tozeur Gare 2 bis	18999005	1900	2120	220
Nefzaoua	Bechelli 3	13994	1600	1460	-140	Djerid	IBN Chabbat 8	19019005	3100	3060	-40
Nefzaoua	Chott yane	19102	1120	1800	680	Djerid	Garaet Jaballah	19091005	2800	2780	-20
Nefzaoua	Bourzine 1	14623	1380	1420	40	Djerid	ERRACHED 1bis	20288005	2790	2840	50
Nefzaoua	Smida	19092	1100	1180	80	Djerid	Seddada 4	X0600010	3450	2940	-510
Nefzaoua	Grad 1	5754	1120	1700	580	Algérie	F SOVIETIQUE N 34	G01000345	3468	4204	736
Nefzaoua	El Ghoula	18735	1160	1560	400	Algérie	DUQUENOY Nø5 M'R	H01000043	3374	3474	100
Nefzaoua	Douz Sud	14023	2540	4050	1510	Algérie	AIN CHERGUIA EL HOZ	H01100463	7242	7689	447
Nefzaoua	DOUZ 6	17790	1720	4620	2900	Algérie	SOVIETIQUE Nø53	H01100511	3800	4645	845
Nefzaoua	Douz ouest	17615	1720	3600	1880	Algérie	SAHANE BERRY 3	H01200040	2292	2500	208
Nefzaoua	Douz 2 bis	30	2480	3720	1240	Algérie	HASSI KHALIFA AEP	H01200044	3080	3055	-25
Nefzaoua	DOUZ SONEDE	6999	1900	3340	1440	Algérie	RAS EL KELB	H01200055	2684	3138	454
Nefzaoua	Bou Hamza 1	14622	1720	3980	2260						

CONCLUSION

En conclusion, si l'on peut considérer que pour le Complexe Terminal en Tunisie, il existe un réseau de surveillance de la qualité assez régulier, et que ce réseau permet d'ores et déjà de lancer les bases d'une investigation en profondeur portant sur l'évolution des salinités autour des chotts, il n'en est rien pour l'Algérie et pour la Libye; de même que pour l'ensemble de la nappe du Continental Intercalaire, il n'existe pas de possibilités installées et régulières de suivi de la qualité. A l'exception du petit noyau qui entoure le Chott Djérid, tout reste donc à faire en vue de concevoir, réaliser et mettre en œuvre le Réseau Qualité du SASS.

GESTION COMMUNE D'UN BASSIN TRANSFRONTIERE

ETUDE SUR LES RESEAUX D'OBSERVATION DU SASS

gisssant en tant que centre d'impulsion et de facilitation, l'OSS s'est appuyé, pour la réalisation du programme SASS, en premier lieu sur l'expertise des institutions spécialisées dans les trois pays, qui disposent d'une importante expérience dans le domaine et sur un large partenariat internationanal.

Le Système Aquifère du Sahara Septentrional [SASS], partagé par l'Algérie, la Tunisie et la Libye, renferme des réserves d'eau considérables, qui ne sont pas exploitables en totalité et se renouvellent peu. Le SASS s'étend sur un Million de Km2 ; il comprend les deux grandes nappes du Continental Intercalaire et du Complexe Terminal. Au cours des trente dernières années, l'exploitation par forages est passée de 0,6 à 2,5 milliards de m3/an. Cette exploitation se trouve aujourd'hui confrontée à de nombreux risques : fortes interférences entre pays, salinisation des eaux, disparition de l'artésianisme, tarissement des exutoires... Les simulations réalisées sur le Modèle du SASS ont mis en évidence les zones les plus vulnérables et permis de dresser la carte des risques du SASS.... Les trois pays concernés par le devenir du SASS sont amenés à rechercher ensemble une forme de gestion commune du Bassin : la mise en place d'un mécanisme institutionnel de concertation s'avère nécessaire, sa mise en oeuvre devant se faire d'une manière progressive.

La présente étude réalisée par le Professeur Mustapha BESBES, dans le cadre du projet TCP/RAB/0065 à la demande conjointe de l'Organisation Mondiale de l'Agriculture et de l'Alimentation (FAO) et de l'Observatoire du Sahara et du Sahel (OSS), constitue une première tentative pour la mise en place des réseaux d'observation du SASS (Piézométrie et qualité).

LES PARTENAIRES

Agence Nationalledes Ressources Hydrauliques (ANRH, Algérie)

Direction Générale des Ressources en Eau (DGRE, Tunisie)

General Water Authority (GWA, Libye)

Fonds Internationanal de Développement Agricole

Département du Développement et de la Coopération Suisse

UNESCO

Organisation des Nations-unies pour l'Alimentation et l'Agriculture

Allemagne (GTZ)

Fonds Français pour l'Environnement Mondial (FFEM)

Fonds Mondial pour l'Environnement (GEF)

Suisse Federal Institute of Technology Zurich